West Coast Aerial Sardine Survey

2011

Application for Exempted Fishing Permit

Applicant:
Northwest Sardine Survey, LLC
(Jerry Thon, Principal)

Science Advisor:
Tom Jagielo
Tom Jagielo, Consulting

Scientific Field Lead:
Ryan Howe

February 13, 2011
I. Introduction

Advisory bodies of the Pacific Fishery Management Council (PFMC), including the Coastal Pelagic Species Advisory Subpanel (CPSAS), Coastal Pelagic Species Management Team (CPSMT), and the Scientific and Statistical Committee (SSC), have recommended that additional fishery-independent indices of abundance be developed for the assessment of Pacific sardine.

To meet the stated need for a credible index of sardine abundance, an aerial survey methodology was developed and successfully tested in 2008 by the Northwest Sardine Survey (NWSS), an industry group based in the Pacific Northwest (Wespestad et al. 2009). A stock assessment review (STAR) panel approved the approach in May 2009, and recommended that it be applied in a coastwide, synoptic survey. The PFMC subsequently approved an Exempted Fishing Permit (EFP) application to conduct a coastwide aerial sardine survey in the summer of 2009, submitted by an industry consortium formed by the NWSS and the California Wetfish Producers Association (CWPA). Work conducted under the 2009 sardine EFP resulted in a survey that extended from Cape Flattery, WA to Monterey Bay, CA (Jagielo et al. 2009). The results from this survey were reviewed by a STAR panel in September 2009 and were approved for use in the 2009 Pacific sardine stock assessment. The 2009 Pacific sardine stock assessment, which included the aerial survey index, was subsequently approved by the SSC and the PFMC for use in 2010 management. The survey was expanded again in 2010 with transect coverage extending further southward, into the southern California Bight. The 2010 results were reviewed by a STAR panel in September 2010 and were approved for use in the 2010 Pacific sardine stock assessment (Jagielo et al. 2010).

The present EFP application is for survey work proposed in 2011 by NWSS. It uses the same methodology employed in the 2009 and 2010 aerial sardine surveys. While work is not proposed for California in 2011, survey coverage could potentially be extended northward into Canada -- if Canadian governmental approvals can be obtained.

The purpose of this application is to document how the proposed survey meets the NMFS requirements for the approval of an EFP. Specifically, it provides: 1) the scientific study design, analytical methodologies, and a description of the overall logistics (in the main document that follows), 2) a detailed Fieldwork Operational Plan (Appendix I), and 3) a point by point discussion of how this EFP application follows the NMFS guidelines for preparation of an EFP application (Appendix II).

This EFP application is submitted to PFMC in order to obtain access to 2,100 mt of sardine which is requested to be withheld from the directed fishery management measures for the West Coast sardine OY for the purpose of funding and conducting the survey in 2011.

The NWSS-LLC will conduct aerial survey work and point sets from the Canadian border to the Oregon-California border (survey area). Additional aerial survey work may
be conducted by the NWSS-LLC in Canada if approval from the Canadian government is obtained in time to do so.

Scientific oversight for the Aerial Sardine Survey will be provided again in 2011 by Mr. Tom Jagielo. Mr. Jagielo will have the primary responsibility to analyze the survey data and will report the results to Dr. Kevin Hill, National Marine Fisheries Service (NMFS), Southwest Fisheries Science Center (SFSC), in a form suitable for input to the stock assessment model. Mr. Ryan Howe will be responsible again in 2011 for oversight of scientific sampling in the field. Mr. Jerry Thon (NWSS) will oversee the day to day logistic activities of the survey, including deployment of vessels and aircraft as needed to accomplish the projects objectives. Mr. Chris Cearns (NWSS) will serve as the West Coast Aerial Survey project Single Point of Contact (SPC), to comply with NMFS reporting requirements for the survey.

II. Survey Design

The aerial sardine survey employs a two-stage sampling design. Stage 1 consists of aerial transect sampling to estimate the surface area (and ultimately the biomass) of individual sardine schools from quantitative aerial photogrammetry; Stage 2 involves at-sea sampling to quantify the relationship between individual school surface area and biomass. Sampling will be conducted in July (following closure of the directed fishery), through August, and potentially into early September of 2011. Logistical details of the survey are provided in Appendix I (West Coast Aerial Sardine Survey - 2011 Field Operational Plan).

Stage 1: Aerial Transect Survey

Logistics

The 2011 aerial survey employs the belt transect method using a systematic random sampling design, with each transect comprising a single sampling unit (Elzinga et al. 2001). Parallel transects will be conducted in an east-west orientation, generally parallel to the onshore-offshore gradient of sardine schools distributed along the coast. Three alternative fixed starting points five miles apart were established, and from these points, three SETs of 41 transects were delineated for the survey. The order of conducting the three replicate SETs will be chosen by randomly picking one SET at a time without replacement. The east and west endpoints of each transect and corresponding shoreline position are given in Appendix I, Tables 1a-i and are mapped in Appendix I, Figures 1a-c for each of the three replicates (SET A, SET B, and SET C, respectively). Transects start at 3 miles from shore and extend westward for 35 statute miles in length. In addition to the 35 statute mile transect, the 3 statute mile segment directly eastward of each transect to the shore will be flown and photographed. Survey biomass will be estimated from the 3-38 mile transect data. Photographs from the shoreward segment will be used primarily to evaluate the potential need for future modification of the survey design.
For 2011, transect spacing will differ in two separate strata. In the northern portion of the survey area (From Cape Flattery, WA southward to approximately Tillamook, OR), transects are spaced 7.5 nautical miles apart. For the southern portion of the survey area (southward to the Oregon-California border) transects are spaced 15 nautical miles apart, as they have been previously. This stratification scheme follows from the observation that, in our previous surveys (2009-2010), this portion of the survey area accounted for 96% of the schools observed, and 99% of the sardine surface area measured.

Details regarding the airplanes and pilots participating in the survey, a description of the order in which transects will be flown to avoid “double counting”, and other operational specifics are described in Appendix I.

Data Collection and Reduction

Each survey plane will be equipped with the same photogrammetric aerial digital camera mounting and data acquisition system that was used in the 2009 and 2010 aerial sardine surveys (Aerial Imaging Solutions; Appendix I, Adjunct 1). This integrated system will be used again to acquire digital images and to log transect data. The system records altitude, GPS position, and spotter observations, which are directly linked to the time stamped quantitative digital imagery. At the nominal survey altitude of 4,000 feet, the approximate width-swept by the camera with a 24 mm lens is 1,829 m (1.13 mi). Digital images will be collected with 60% overlap to ensure seamless photogrammetric coverage along transects.

A Transect Flight Log Form will be kept during the sampling of each transect for the purpose of documenting the observations of the pilot (Appendix I, Adjunct 2). Key notations will include 1) observations of school species identified and 2) documentation of any special conditions that could have an influence on interpreting the photographs.

In order to provide ground truth information and a cross comparison between survey aircraft, digital imagery of certain land-based features of known size (e.g., an airplane hangar, a football field, or a set of tennis courts) will again be collected at a series of altitudes ranging from 500 ft. to 4,000 ft. The observed vs. actual sizes of the objects will subsequently be compared to validate camera performance and to evaluate photogrammetric error.

Digital images from the survey will be analyzed to determine the number, size, and shape of sardine schools on each transect. Adobe Photoshop Lightroom 3.0 software will be used to make the sardine schools visible. Measurements of sardine school size (m²) and shape (circularity) will be made using Adobe Photoshop CS5-Extended. Transect width will be determined from the digital images using the basic photogrammetric relationship:

\[
\frac{I}{F} = \frac{GCS}{A}
\]

and solving for GCS:

\[
GCS = \frac{I}{F}A
\]
where \(I \) = Image width of the camera sensor (e.g. 36 mm), \(F \) = the focal length of the camera lens (e.g. 24mm), \(A \) = altitude, and \(GCS \) = “ground cover to the side” or width of the field of view of the digital image. Transect width will be obtained by taking the average of \(GCS \) for all images collected on transect. Transect length will be obtained from the distance between start and stop endpoints using the GPS data logged by the data acquisition system.

Data Analysis

Estimation of total sardine biomass for the survey area will be accomplished in a 3 step process, requiring: 1) measurement of individual school surface area on sampled transects, 2) estimation of individual school biomass (from measured school surface area and estimated school density), and 3) transect sampling design theory for estimation of a population total.

Individual school surface area \((a_i) \) will be measured on the photo-documented transects using the measurement tool feature of *Adobe Photoshop*, employing the photogrammetric relationships described above. Individual school density \((d_i) \) is specific to school size and will be determined from the empirical relationship between surface area and biomass obtained from Stage 2 (point-set) sampling (described below). Individual school biomass \((b_i) \) is estimated as the product of school density and surface area \((b_i = d_i a_i) \). The sum of individual school biomass \((b_u) \) will then be determined for each transect \((u) \). The mean sampled biomass for the study area \((\bar{b}) \) is computed as:

\[
\bar{b} = \frac{\sum_{u=1}^{n} b_u}{n} .
\]

Total biomass for the study area \((\bar{B}) \) will be estimated using the unbiased estimator for a population total (Stehman and Salzer 2000),

\[
\bar{B} = N \bar{b} ,
\]

As in 2010, three replicate sets of transects (SET A, SET B, and SET C) will be completed and thus three estimates of \(\bar{B} \) will be calculated: \(\bar{B}_A, \bar{B}_B, \) and \(\bar{B}_C \), respectively. The point estimate of total biomass for the study area \((\bar{B}_T) \) will be obtained by averaging these three estimates of biomass.
Individual School Biomass
The biomass of individual schools observed on the transects (b_i) will be calculated using 1) measurements of school surface area, and 2) the relationship between school surface area and biomass, obtained from point sets (see Stage 2, below). The three parameter Michaelis-Menten (MM) model assuming log-normal error will again be used to describe the sardine surface area–density relationship

$$d_i = \frac{(y_{int} \times c) + (asymp \times a_i)}{c + a_i}$$

where

$d_i = \text{school density (mt/m}^2\text{)}$
$a_i = \text{school area (m}^2\text{)}$
$y_{int} = \text{y intercept}$
$asymp = \text{asymptote as x} \to \infty$
$asymp/c = \text{slope at the origin}$

As noted above, individual school biomass (b_i) will then estimated as the product of school density and surface area ($b_i = d_i a_i$).

Total Biomass Coefficient of Variation (CV)
The CV of the total biomass estimate will again be obtained by employing a bootstrapping procedure implemented with the R statistical programming language (Jagielo et al 2010). The intent of the procedure is to propagate error from the point of school density estimation forward -- to the ultimate goal of total biomass estimation from the three replicate sets of transect data.

Stage 2: At-Sea Point Set Sampling

Logistics
Empirical measurements of biomass will be obtained by conducting research hauls or “point sets” at sea. Point sets are the means used to determine the relationship between individual school surface area (as documented with quantitative aerial photographs, described above) and the biomass of individual fish schools. Three purse seine vessels will participate in the survey under the direction of Mr. Thon. The identification and gear configuration of the participating vessels is given in Appendix I, Adjunct 3.

For the purposes of the aerial survey, a valid point set is defined as a sardine school first identified by a survey pilot and subsequently captured in its entirety by a survey purse seine vessel. The criteria that will be used for determining the acceptability of point sets for the school density analysis are given in Appendix I, Adjunct 4. Attempts will be made to conduct point sets over as wide an area as feasible; however, point sets may occur in any area covered by aerial transects where sardine schools of the desired size are found. Additional details on the logistics of point set sampling are provided in Appendix I.
Data Collection and Reduction
For fully captured schools, the 1) total weight of the school, 2) numbers per unit weight, and 3) species composition will be determined from biological sampling of the point set hauls (see below). Additionally, school height in the water column will be recorded from vessel sonar and down-sounder equipment.

The point set sampling design is based on school size, with the goals of: 1) obtaining a range of sizes representative of schools photographed on the transects, and 2) keeping within a size range consistent with the safe operation of the vessels participating in the survey. Thus, point sets will generally not be attempted for schools larger than approximately 130 mt (approximately 10,000 m²). It is anticipated that 2,100 mt of sardine will be available for point sets in 2011. As in 2010, a total of 56 point sets are planned for the Washington/Oregon survey area (Appendix I, Table 2).

Biological Sampling of Point Sets
Fishermen participating in the survey will keep the point set hauls in separate holds upon capture so the tonnage of each aerially photographed and measured haul can be determined separately upon landing. Fish will be collected at fish processing plants upon landing. Samples will be collected from the unsorted catch while being pumped from the vessels. Fish will be taken systematically at the start, middle, and end of each set as it is pumped. The three samples will then be combined and a random subsample of fish (n = 50) will be taken from the pooled sample. Length, weight, sex, and maturity data will be collected for each sampled fish. Sardine weights will be taken using an electronic scale accurate to 0.5 gm; lengths will be taken using a millimeter length strip provided attached to a measuring board. Standard length is determined by measuring from sardine snout to the last vertebrae. Sardine maturity will be documented by referencing maturity codes (female- 4 point scale, male- 3 point scale) supplied by Beverly Macewicz NMFS, SWFSC (Appendix I, Table 3). A subsample of 25 fish from each point set sample will be frozen and retained for collection of otoliths.

III. Survey Logistics
A description of: 1) the roles and responsibilities of project personnel, 2) EFP purse seine vessel selection, 3) the disposition of fish harvested under the EFP, and 4) the project budget, are provided below. Additionally, a detailed Field Operational Plan is presented in Appendix I, and a point by point discussion of NMFS EFP guidelines and requirements is presented in Appendix II.

Key Project Personnel: Roles and Responsibilities
Name: Mr. Jerry Thon
Affiliation: Principal, Northwest Sardine Survey, LLC
Address: 12 Bellwether Way, Suite 209, Bellingham, WA 98225
Email: jthon2@msn.com
Phone: (360) 201-8449
Role: Industry Coordinator; EFP Applicant: NWSS-LLC

Responsibilities: Oversee day to day logistic activities of the survey, including
deployment of vessels and aircraft as needed to accomplish the projects objectives.
Coordinatate sale of EFP sardine with participating processors. Administrate EFP funds;
direct funds as required to accomplish the projects scientific objectives. Contract with
scientists, vessels, pilots, and others as needed to execute the project with scientific
oversight from Mr. Jagielo (Science Advisor).

Name: Mr. Tom Jagielo, MSc
Affiliation: Tom Jagielo, Consulting
Email: TomJagielo@msn.com
Phone: (360) 791-9089
Role: Science Advisor

Responsibilities: Develop survey design. Provide scientific guidance and oversight for
project execution. Analyze survey data. Provide survey results in a form suitable for use
Represent the project in public fora (e.g., PFMC, STAR panels, and SSC) to present and
interpret scientific results from the survey.

Name: Mr. Ryan Howe, BSc
Affiliation: Consultant
Email: ryanhowe9@yahoo.com
Role: Scientific Field Leader

Responsibilities: Under direction of Mr. Jagielo, coordinate field data collection and
ensure scientific validity of field data from the survey. Compile data for analysis.
Provide leadership of photogrammetric analysis staff. Assist with survey data analysis,
preparation of final report, and presentation of project results as appropriate and/or
required.

EFP Purse Seine Vessel Selection

Our priorities for selecting vessels to participate under this EFP include: 1) vessels
having the ability to separate the point sets into different hatches, 2) vessels committing
to follow scientific protocol as directed during this study period, and 3) vessels that have
installed or have the capacity to install or carry any electronic equipment necessary.
With the narrow time window for sampling it is desirable to have a field of boats we can draw on. The main reason to have several boats in this period is to maximize the number of point sets we can bring in during optimum weather and sea conditions. These boats will only be used for point sets. Some vessels do not have recording sounders, but all vessels do have sonar's that can measure school height and log it. Having a slate of potential vessels to draw from removes the possibility of losing operational days from problems like engine failure. Being able to pick vessels from the list of available boats, and reporting the vessels that will be operating at any given time to local enforcement will help to meet the EFP goals efficiently and cost-effectively. We request approval to deploy up to three vessels per 24 hour period (See Appendix I, Adjunct 3).

Disposition of fish harvested under the EFP

Fish harvested under this EFP will be sold to help fund the sardine research described above. Participating processors receiving point set EFP product from sardine quota set-aside to NWSS-LLC will be identified prior to any fish deliveries made under this EFP, and they will process the fish by bid. Fish Tickets will be tabulated to verify that the sardine harvested under the EFP do not exceed the amount of harvest allocated for the research set-aside to the recipients, and that the amounts harvested correspond to the total of the amounts harvested while conducting the point set research.

Budget

An itemized budget is provided as Appendix II, Adjunct 2. The amount of funds that will be available to the project from the sale of sardine harvested and sold under the EFP is of necessity a rough estimate; this number will be refined as bids for processing are received and the amount of funds potentially available can be established. On the cost side, we have detailed components of the project that will be required to complete the work proposed. Field work always includes uncertainty (weather, fish availability, etc.) and contingency amounts have been included to attempt to address some of this uncertainty.

The financial structure of the project is as follows:

1. Funds derived from the capture and sale of the sardine research set-aside will be used to pay for the research to be conducted under this proposed EFP. The costs of the project will be the responsibility of the NWSS-LLC and will be paid for by the sale of the fish captured during the point sets.

2. Fishing vessels will be chartered by NWSS-LLC to catch the sardines during point sets and conduct echo soundings of fish schools with ES-60 or other suitable electronic equipment.

3. Participating processors will not profit on the sale of the EFP sardine quota; rather, they will process the fish at cost. The processor(s) for this project will be chosen after submitting bids. The lowest bid(s) will be accepted.
4. Airplanes conducting the photo surveys and assisting in point set captures will work under hourly rates or by contract to NWSS-LLC.

5. Equipment needs and operational costs, including scientific support, will be paid for by the NWSS-LLC from the sale of their 2,100 mt research quota. We anticipate the revenue from the fish sales will be sufficient to cover the costs to capture, process, and conduct the survey.

IV. Exempted Fishery Permit Application - Conclusion

In summary, the proposed EFP will contribute substantially toward improving the data available to assess the sardine stock for management on the Pacific Coast. Building on the successful survey work conducted and used in the 2009 and 2010 stock assessments, the EFP research study in 2011 will enable us to obtain a third biomass estimate. The research set-aside of OY under the EFP will provide a reliable source of funds and will allow us to conduct our work in a controlled, methodical manner, separate from the race for fish, which ensues during the directed fishery. This will enable us to obtain a larger and more representative sample of point sets to more precisely and accurately estimate sardine school density – an important parameter needed for sardine biomass estimation using the aerial survey method.

V. Literature Cited

Figure 1. Relationship of surface area (m^2) (x axis) vs. density (mt/m^2) (y axis). Solid line: relationship used in the 2009 analysis; dashed line: relationship used in the 2010 analysis.
Appendix I

West Coast Aerial Sardine Survey

2011

Field Operational Plan

Industry Coordinator:
Northwest Sardine Survey, LLC
(Jerry Thon, Principal)

Science Advisor:
Tom Jagielo
Tom Jagielo, Consulting

Scientific Field Project Leader:
Ryan Howe

February 13, 2011
Aerial Transect Survey

Overall Aerial Survey Design

Mr. Jerry Thon will oversee the day to day logistic activities of the survey, including deployment of vessels and aircraft as needed to accomplish the projects objectives. To ensure clear communications among participants and other interested parties, the Single Point of Contact (SPC) person for 2010 survey field work will be Mr. Chris Cearns (NWSS), working under the direction of Mr. Thon.

Scientific field work will be conducted in Washington and Oregon by Mr. Ryan Howe with oversight from Mr. Tom Jagielo. Mr. Howe will lead the digital photograph analysis team and will archive all photographic and biological data.

Mr. Jagielo will be responsible for analyzing the survey data and will report the results to Dr. Kevin Hill, NMFS, SWFSC, in a form suitable for input to the stock assessment model. Mr. Howe will be available to help with data analysis as requested.

The 2011 coastwide aerial survey design consists of 41 transects spanning the area from Cape Flattery in the north to the Oregon-California border in the south (Table 1, Figure 1). Each 41-transect series will be conducted as a SET, and will make up one survey replicate. The 2011 survey will strive to complete three replicate SETs, or 123 transects in total. Survey coverage could potentially be extended northward into Canada -- if Canadian governmental approvals can be obtained.

Location of Transects
The east and west endpoints of each transect and corresponding shoreline position are given in Tables 1a-c and are mapped in Figures 1a-c for each of the three replicates (SET A, SET B, and SET C, respectively). Transects start at 3 miles from shore and extend westward for 35 statute miles in length. Transect spacing differs in the north (7.5 nautical miles) compared to the south (15 nautical miles) of the survey area. In addition to the 35 statute mile transect, the 3 statute mile segment directly eastward of each transect to the shore will be flown and photographed. Survey biomass will be estimated from the 3-35 mile transect data. Photographs from the shoreward segment will be used primarily to evaluate the need for future modification of the survey design.

Aerial Resources
A Piper Super Cub and a Cessna 337 will be used to conduct survey transects and point sets. Both survey airplanes will be equipped with a Canon EOS 1Ds in an Aerial Imaging Solutions FMC mount system (Adjunct 1), installed inside the fuselage of the plane.

Use of Aerial Resources
Aerial resources will be coordinated by Mr. Thon (NWSS). To conduct a SET, survey pilots will begin with transect number 1 at Cape Flattery in the north and will proceed to the southernmost transect off the southern Oregon coast. When operating together as a team, pilots will communicate via radio or cell phone. They will take a “Leap-Frog” approach: for example --
plane 1 will fly transects 1-5 while plane 2 is flying transects 6-10; then plane 1 will fly transects 11-15 while plane 2 flies Transects 16-20, and so on. The actual number of transects flown in a day by each plane will be determined jointly by the survey pilots and Mr. Thon and may be more or less than the example of five per plane given above.

Conditions Acceptable for Surveying
At the beginning of each potential survey day, the survey pilots will confer with Mr. Thon and will jointly judge if conditions will permit safe and successful surveying that day. Considering local conditions, they will also jointly determine the optimal time of day for surveying the area slated for coverage that day. Factors will include sea condition, time of day for best sardine visibility, presence of cloud or fog cover, and other relevant criteria.

Transect Sampling
Prior to beginning a survey flight, the Pre-Flight Survey Checklist (Adjunct 2) will be completed for each aircraft. This will ensure that the camera system settings are fully operational for data collection. For example, it is crucial to have accurate GPS information in the log file. It is also crucial that the photograph number series is re-set to zero. Transects flown without the necessary survey data are not valid and cannot be analyzed.

The decision of when to start a new SET of transects will be determined by Mr. Thon with input from Mr. Jagielo and/or others as requested. Transects will be flown at the nominal survey altitude of 4,000 ft whenever possible. Transects may be flown starting at either the east end or the west end.

A Transect Flight Log Form (Adjunct 2) will be kept during the sampling of each transect for the purpose of documenting the observations of the pilot and/or onboard observers. Key notations will include observations of school species ID and documentation of any special conditions that could have an influence on interpreting photographs taken during transects.

Sardine are believed to migrate from California, northward during the summer. Thus, to avoid the possibility of “double counting”, it is important that transects are conducted in a North-to-South progression. Once a transect (or a portion of a transect) has been flown, neither that transect, nor any transects to the north of that transect, may be flown again during that transect SET in progress. It will be acceptable to skip transects or portions of transects if conditions require it (e.g. if better weather is available to the south of an area), but transects may not be “made up” once skipped during the sampling of a transect SET. Once begun, the goal is to cover the full 41-transect SET in as few days as possible.

Data Transfer
Photographs and FMC log files will be downloaded and forwarded for analysis and archival at the end of each survey day. At the end of each flight, the Scientific Field Lead (Mr. Howe) will verify that the camera and data collection system operated properly and that images collected are acceptable for analysis. Mr. Howe will collect data from the pilots and will coordinate the transfer and archival of all aerial survey data.

I. Point Set Sampling
Location, Number, and Size of Point Sets
Point sets are fully captured sardine schools landed by purse seiners approved and permitted for this research. Each set by a purse seiner will be directed by one of the survey pilots. Point sets will be made over as wide an area as feasible within each region, in order to distribute the sampling effort spatially.

Point sets will be collected over a range of sizes from each region, as set out in Table 2. The goal is to obtain 56 valid point sets.

Aerial Photography of Point Sets
Sardine schools to be captured for point sets will be first selected by the survey pilot and photographed at the nominal survey altitude of 4,000 ft. Following a discrete school selection, the pilot will descend to a lower altitude to better photograph the approach of the seiner to the school and set the seiner for capture of the school. Photographs will be taken before and during the vessels approach to the school for the point set capture. Each school selected by the pilot and photographed for a potential point set will be logged on the survey pilot’s Point Set Flight Log Form (Adjunct 2). The species identification of the selected school will be verified by the Captain of the purse seine vessel conducting the point set and will be logged on the Fisherman’s Log Form (Adjunct 2). These records will be used to determine the rate of school mis-identification by spotter pilots in the field and by analysts viewing photographs taken at the nominal survey altitude of 4,000 ft.

Vessel Point Set Capture
The purse seine vessel will encircle (wrap) and fully capture the school selected by the survey pilot for the point set. Any school not “fully” captured will not be considered a valid point set for analysis. If a school is judged to be “nearly completely” captured (i.e., over 90% captured), it will be noted as such and will be included for analysis. Both the survey pilot and the purse seine captain will independently make note of the “percent captured” on their survey log forms for this purpose. Upon capture, sardine point sets will be held in separate holds for separate weighing and biological sampling of each set after landing.

Biological Sampling
Biological samples of individual point sets will be collected at the landing docks or at the fish processing plants upon landing. Fish will be systematically taken at the start, middle, and end of a delivered set. The three samples will then be combined and a random subsample of fish will be taken. The sample size will be n = 50 fish for each point set haul.

Length, weight, maturity, and otoliths will be sampled for each point set haul and will be documented on the Biological Sampling Form (Adjunct 2). Sardine weights will be taken using an electronic scale accurate to 0.5 gm. Sardine lengths will be taken using a millimeter length strip attached to a measuring board. Standard length will be determined by measuring from sardine snout to the last vertebrae. Sardine maturity will be established by referencing maturity codes (female- 4 point scale, male- 3 point scale) supplied by Beverly Macewicz NMFS, SWFSC. A subsample of 25 fish from each point set sample will be individually bagged,
identified with sample number and frozen with other fish in the subsample, clearly identified as to point set number, vessel, and location captured and retained for collection of otoliths.

Hydroacoustic Sounding of School Height
School height will be measured for each point set. This may be obtained by using either the purse seine or other participating research vessels' hydroacoustic gear. The school height measurements to be recorded on the Fisherman’s Log Form are: 1) depth in the water column of the top of the school, and 2) depth in the water column of the bottom of the school. Simrad ES-60 sounders will be installed on three purse seine vessels. Data collected by the ES-60 sounders will be backed-up daily and archived onshore.

Number and Size of Point Sets to be Captured
Point sets will be conducted for a range of school sizes (Table 2). Point sets will be targeted working in general from the smallest size category to the largest. Each day, spotter pilots will operate with an updated list of remaining school sizes needed for analysis. Each spotter pilot will use his experience to judge the biomass of sardine schools from the air, and will direct the purse seine vessel to capture schools of appropriate size. Following landing of the point sets at the dock, the actual school weights will be determined. Every effort will be made to ensure, as soon as possible, that successfully landed point sets were also successfully photographed. This will in general be at the end of each fishing day or sooner. After verification of point set acceptability, the list of remaining school sizes needed from Table 2 will be updated accordingly for ongoing fishing. If schools are not available in the designated size range, point sets will be conducted on schools as close to the designated range as possible. Pumping large sets onto more than one vessel should be avoided, and should only be done in the accidental event that school size was grossly underestimated. Mr. Howe will oversee the gathering of point set landing data and will update the list daily. The total landed weight of point sets sampled will not exceed 2,100 mt.

Spatial Distribution of Point Sets
In order to distribute point sets spatially, sampling will occur both north and south of the Columbia River. Efforts will be made to distribute the point sets offshore vs. nearshore, as well. Quadrants have been identified to facilitate spatial distribution of the point sets (Figure 2).

Landing Reporting Requirements
Cumulative point set landings will be updated by Mr. Chris Cearns (NWSS), who will report the running total daily to NMFS, as per the terms of the Exempted Fishing Permit. Also included in this daily report will be an estimate of the weight of all by-catch by species.

Other EFP Reporting Requirements
To ensure clear communications among participants and other interested parties, the single point of contact (SPC) person during 2011 survey field work will be Mr. Chris Cearns.

Mr. Cearns (under the direction of Mr. Thon) will also be responsible for providing the other required reporting elements (as specified in the EFP permit) to NMFS. For example, a daily notice will be provided for enforcement giving 24 hour notice of vessels to be conducting point
sets on any given day and will include vessel name, area to be fished, estimated departure time, estimated return time.

II. Calibration and Validation

Aerial Measurement Calibration
Each survey year, routine calibration is conducted to verify aerial measurements. A series of photographs will again be collected from a feature of known size (e.g., a football field or tennis court) on the ground, from the altitudes of 1,000 ft, 2,000 ft, 3,000 ft, and 4,000 ft. For each altitude series, an aerial pass will be made to place the target onto the right, middle, and left portions of the photographic image.

Aerial Photographs and Sampling for Species Validation
The collection of reference photographs is updated each survey year, for the purpose of species identification. These photographs are used by the team of photograph analysts to continue to learn how to discern between sardine and other species as they appear on the aerial transect photographs.

Reference photographs will be taken at the nominal survey altitude of 4,000 ft for the purpose of species identification. The spotter pilots will find and photograph schooling fish other than sardine (e.g. mackerel, herring, smelt, anchovy, etc). For the actual schools photographed, a vessel at sea (typically a small, relatively fast boat) will collect a jig sample to document the species identification. This sampling will most likely occur in June, prior to commencement of the summer fishery opening.
Table 1a. SET A

| Location | Survey Number | Transect N...
Table 1b. SET B

<table>
<thead>
<tr>
<th>Location</th>
<th>Survey</th>
<th>Transect</th>
<th>Transect Latitude</th>
<th>West End</th>
<th>East End</th>
<th>Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area</td>
<td>Number</td>
<td>Lat Deg</td>
<td>Lat Min</td>
<td>Long Deg</td>
<td>Long Min</td>
</tr>
<tr>
<td>Washington N</td>
<td>B1</td>
<td>48</td>
<td>15.000</td>
<td>125</td>
<td>30.40</td>
<td>B1w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B1a</td>
<td>48</td>
<td>7.500</td>
<td>125</td>
<td>30.29</td>
<td>B1aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B2</td>
<td>48</td>
<td>0.000</td>
<td>125</td>
<td>28.17</td>
<td>B2w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B2a</td>
<td>47</td>
<td>52.500</td>
<td>125</td>
<td>31.05</td>
<td>B2aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B3</td>
<td>47</td>
<td>45.000</td>
<td>125</td>
<td>12.94</td>
<td>B3w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B3a</td>
<td>47</td>
<td>37.500</td>
<td>125</td>
<td>8.82</td>
<td>B3aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B4</td>
<td>47</td>
<td>30.000</td>
<td>125</td>
<td>7.70</td>
<td>B4w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B4a</td>
<td>47</td>
<td>22.500</td>
<td>125</td>
<td>6.58</td>
<td>B4aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B5</td>
<td>47</td>
<td>15.000</td>
<td>125</td>
<td>0.47</td>
<td>B5w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B5a</td>
<td>47</td>
<td>7.500</td>
<td>125</td>
<td>7.500</td>
<td>B5aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B6</td>
<td>47</td>
<td>0.000</td>
<td>125</td>
<td>57.24</td>
<td>B6w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B6a</td>
<td>46</td>
<td>52.500</td>
<td>124</td>
<td>54.63</td>
<td>B6aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B7</td>
<td>46</td>
<td>45.000</td>
<td>124</td>
<td>52.02</td>
<td>B7w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B7a</td>
<td>46</td>
<td>37.500</td>
<td>124</td>
<td>50.91</td>
<td>B7aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B8</td>
<td>46</td>
<td>30.000</td>
<td>124</td>
<td>49.80</td>
<td>B8w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B8a</td>
<td>46</td>
<td>22.500</td>
<td>124</td>
<td>49.19</td>
<td>B8aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>B9</td>
<td>46</td>
<td>15.000</td>
<td>124</td>
<td>48.58</td>
<td>B9w</td>
</tr>
<tr>
<td>Washington N</td>
<td>B9a</td>
<td>46</td>
<td>7.500</td>
<td>124</td>
<td>40.48</td>
<td>B9aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B10</td>
<td>45</td>
<td>0.000</td>
<td>124</td>
<td>42.37</td>
<td>B10w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B10a</td>
<td>45</td>
<td>52.500</td>
<td>124</td>
<td>42.76</td>
<td>B10aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B11</td>
<td>45</td>
<td>45.000</td>
<td>124</td>
<td>43.16</td>
<td>B11w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B11a</td>
<td>45</td>
<td>37.500</td>
<td>124</td>
<td>43.05</td>
<td>B11aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B12</td>
<td>45</td>
<td>30.000</td>
<td>124</td>
<td>42.94</td>
<td>B12w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B12a</td>
<td>45</td>
<td>22.500</td>
<td>124</td>
<td>43.34</td>
<td>B12aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B13</td>
<td>45</td>
<td>15.000</td>
<td>124</td>
<td>42.74</td>
<td>B13w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B13a</td>
<td>45</td>
<td>7.500</td>
<td>124</td>
<td>44.64</td>
<td>B13aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B14</td>
<td>45</td>
<td>0.000</td>
<td>124</td>
<td>46.54</td>
<td>B14w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B14a</td>
<td>45</td>
<td>52.500</td>
<td>124</td>
<td>48.44</td>
<td>B14aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B15</td>
<td>44</td>
<td>45.000</td>
<td>124</td>
<td>48.33</td>
<td>B15w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B15a</td>
<td>44</td>
<td>37.500</td>
<td>124</td>
<td>48.73</td>
<td>B15aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B16</td>
<td>44</td>
<td>30.000</td>
<td>124</td>
<td>49.14</td>
<td>B16w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B17</td>
<td>44</td>
<td>15.000</td>
<td>124</td>
<td>50.94</td>
<td>B17w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B18</td>
<td>44</td>
<td>0.000</td>
<td>124</td>
<td>52.75</td>
<td>B18w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B19</td>
<td>43</td>
<td>45.000</td>
<td>124</td>
<td>55.55</td>
<td>B19w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B20</td>
<td>43</td>
<td>30.000</td>
<td>124</td>
<td>57.37</td>
<td>B20w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B21</td>
<td>43</td>
<td>15.000</td>
<td>124</td>
<td>8.24</td>
<td>B21w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B22</td>
<td>43</td>
<td>0.000</td>
<td>124</td>
<td>12.00</td>
<td>B22w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B23</td>
<td>42</td>
<td>45.000</td>
<td>124</td>
<td>14.82</td>
<td>B23w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B24</td>
<td>42</td>
<td>30.000</td>
<td>124</td>
<td>8.64</td>
<td>B24w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B25</td>
<td>42</td>
<td>15.000</td>
<td>124</td>
<td>7.46</td>
<td>B25w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>B26</td>
<td>42</td>
<td>0.000</td>
<td>124</td>
<td>55.29</td>
<td>B26w</td>
</tr>
</tbody>
</table>
Table 1c. SET C

<table>
<thead>
<tr>
<th>Location</th>
<th>Survey</th>
<th>Transect</th>
<th>Transect Latitude</th>
<th>West End</th>
<th>East End</th>
<th>Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area</td>
<td>Number</td>
<td>Lat Deg</td>
<td>Lat Min</td>
<td>Way Point #</td>
<td>Long Deg</td>
</tr>
<tr>
<td>Washington N</td>
<td>C1</td>
<td>48</td>
<td>10.000</td>
<td>125</td>
<td>31.33</td>
<td>C1w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C1a</td>
<td>48</td>
<td>2.500</td>
<td>125</td>
<td>28.21</td>
<td>C1aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>C2</td>
<td>47</td>
<td>55.000</td>
<td>125</td>
<td>25.09</td>
<td>C2w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C2a</td>
<td>47</td>
<td>47.500</td>
<td>125</td>
<td>14.97</td>
<td>C2aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>C3</td>
<td>47</td>
<td>40.000</td>
<td>125</td>
<td>9.85</td>
<td>C3w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C3a</td>
<td>47</td>
<td>32.500</td>
<td>125</td>
<td>8.24</td>
<td>C3aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>C4</td>
<td>47</td>
<td>25.000</td>
<td>125</td>
<td>6.62</td>
<td>C4w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C4a</td>
<td>47</td>
<td>17.500</td>
<td>125</td>
<td>2.51</td>
<td>C4aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>C5</td>
<td>47</td>
<td>10.000</td>
<td>124</td>
<td>58.40</td>
<td>C5w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C5a</td>
<td>47</td>
<td>2.500</td>
<td>124</td>
<td>56.78</td>
<td>C5aw</td>
</tr>
<tr>
<td>Washington N</td>
<td>C6</td>
<td>46</td>
<td>55.000</td>
<td>124</td>
<td>55.17</td>
<td>C6w</td>
</tr>
<tr>
<td>Washington N</td>
<td>C6a</td>
<td>46</td>
<td>47.500</td>
<td>124</td>
<td>53.06</td>
<td>C6aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C10</td>
<td>45</td>
<td>55.000</td>
<td>124</td>
<td>50.95</td>
<td>C10w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C10a</td>
<td>45</td>
<td>47.500</td>
<td>124</td>
<td>44.69</td>
<td>C10aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C11</td>
<td>45</td>
<td>40.000</td>
<td>124</td>
<td>41.09</td>
<td>C11w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C11a</td>
<td>45</td>
<td>32.500</td>
<td>124</td>
<td>38.98</td>
<td>C11aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C12</td>
<td>45</td>
<td>25.000</td>
<td>124</td>
<td>42.88</td>
<td>C12w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C12a</td>
<td>45</td>
<td>17.500</td>
<td>124</td>
<td>43.27</td>
<td>C12aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C13</td>
<td>45</td>
<td>10.000</td>
<td>124</td>
<td>43.67</td>
<td>C13w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C13a</td>
<td>45</td>
<td>2.500</td>
<td>124</td>
<td>46.97</td>
<td>C13aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C14</td>
<td>44</td>
<td>55.000</td>
<td>124</td>
<td>46.47</td>
<td>C14w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C14a</td>
<td>44</td>
<td>47.500</td>
<td>124</td>
<td>48.37</td>
<td>C14aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C15</td>
<td>44</td>
<td>40.000</td>
<td>124</td>
<td>48.27</td>
<td>C15w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C15a</td>
<td>44</td>
<td>32.500</td>
<td>124</td>
<td>49.17</td>
<td>C15aw</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C16</td>
<td>44</td>
<td>25.000</td>
<td>124</td>
<td>50.07</td>
<td>C16w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C17</td>
<td>44</td>
<td>10.000</td>
<td>124</td>
<td>51.88</td>
<td>C17w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C18</td>
<td>43</td>
<td>55.000</td>
<td>124</td>
<td>53.68</td>
<td>C18w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C19</td>
<td>43</td>
<td>40.000</td>
<td>124</td>
<td>56.49</td>
<td>C19w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C20</td>
<td>43</td>
<td>25.000</td>
<td>124</td>
<td>3.31</td>
<td>C20w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C21</td>
<td>43</td>
<td>10.000</td>
<td>124</td>
<td>9.12</td>
<td>C21w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C22</td>
<td>42</td>
<td>55.000</td>
<td>124</td>
<td>14.93</td>
<td>C22w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C23</td>
<td>42</td>
<td>40.000</td>
<td>124</td>
<td>8.76</td>
<td>C23w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C24</td>
<td>42</td>
<td>25.000</td>
<td>124</td>
<td>8.58</td>
<td>C24w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C25</td>
<td>42</td>
<td>10.000</td>
<td>124</td>
<td>5.40</td>
<td>C25w</td>
</tr>
<tr>
<td>Oregon N</td>
<td>C26</td>
<td>41</td>
<td>55.000</td>
<td>124</td>
<td>54.23</td>
<td>C26w</td>
</tr>
</tbody>
</table>
Table 1g. SET A Canadian Transects

<table>
<thead>
<tr>
<th>Location</th>
<th>Survey Area</th>
<th>Transect Number</th>
<th>Transect Latitude</th>
<th>West End</th>
<th>East End</th>
<th>Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna1</td>
<td>48 35.00</td>
<td>125 30.73</td>
<td>cna1w</td>
<td>124 44.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cna2</td>
<td>48 50.00</td>
<td>125 36.98</td>
<td>cna2w</td>
<td>125 10.95</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna3</td>
<td>50 0.00</td>
<td>126 43.23</td>
<td>cna3w</td>
<td>125 56.97</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna4</td>
<td>49 20.00</td>
<td>126 52.48</td>
<td>cna4w</td>
<td>126 5.99</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna5</td>
<td>49 35.00</td>
<td>127 23.74</td>
<td>cna5w</td>
<td>126 37.01</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna6</td>
<td>49 50.00</td>
<td>127 29.00</td>
<td>cna6w</td>
<td>126 42.03</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna7</td>
<td>50 5.00</td>
<td>128 40.27</td>
<td>cna7w</td>
<td>127 53.05</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna8</td>
<td>50 20.00</td>
<td>128 48.54</td>
<td>cna8w</td>
<td>127 1.07</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna9</td>
<td>50 35.00</td>
<td>128 51.94</td>
<td>cna9w</td>
<td>128 18.09</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna10</td>
<td>50 50.00</td>
<td>129 3.08</td>
<td>cna10w</td>
<td>128 15.11</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna11</td>
<td>51 0.00</td>
<td>129 29.37</td>
<td>cna11w</td>
<td>127 41.13</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna12</td>
<td>51 20.00</td>
<td>129 36.65</td>
<td>cna12w</td>
<td>127 51.16</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna13</td>
<td>51 35.00</td>
<td>129 41.94</td>
<td>cna13w</td>
<td>127 53.18</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna14</td>
<td>51 50.00</td>
<td>129 50.23</td>
<td>cna14w</td>
<td>127 56.20</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna15</td>
<td>52 0.00</td>
<td>130 30.53</td>
<td>cna15w</td>
<td>127 41.23</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna16</td>
<td>52 20.00</td>
<td>130 36.53</td>
<td>cna16w</td>
<td>128 24.25</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna17</td>
<td>52 35.00</td>
<td>131 13.83</td>
<td>cna17w</td>
<td>128 17.27</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna18</td>
<td>52 50.00</td>
<td>131 22.39</td>
<td>cna18w</td>
<td>129 32.30</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna19</td>
<td>53 5.00</td>
<td>132 26.76</td>
<td>cna19w</td>
<td>128 36.32</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna20</td>
<td>53 20.00</td>
<td>132 47.08</td>
<td>cna20w</td>
<td>128 56.35</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna21</td>
<td>53 35.00</td>
<td>133 33.40</td>
<td>cna21w</td>
<td>129 42.37</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna22</td>
<td>53 50.00</td>
<td>133 50.73</td>
<td>cna22w</td>
<td>129 53.73</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna23</td>
<td>54 0.00</td>
<td>134 23.66</td>
<td>cna23w</td>
<td>130 36.43</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna24</td>
<td>54 20.00</td>
<td>134 39.41</td>
<td>cna24w</td>
<td>130 32.45</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cna25</td>
<td>54 35.00</td>
<td>135 21.75</td>
<td>cna25w</td>
<td>130 29.48</td>
</tr>
</tbody>
</table>

Table 1h. SET B Canadian Transects

<table>
<thead>
<tr>
<th>Location</th>
<th>Survey Area</th>
<th>Transect Number</th>
<th>Transect Latitude</th>
<th>West End</th>
<th>East End</th>
<th>Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb1</td>
<td>48 30.00</td>
<td>125 29.65</td>
<td>cnb1w</td>
<td>124 43.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cnb2</td>
<td>48 45.00</td>
<td>125 56.90</td>
<td>cnb2w</td>
<td>125 10.94</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb3</td>
<td>49 0.00</td>
<td>126 28.15</td>
<td>cnb3w</td>
<td>125 41.96</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb4</td>
<td>49 15.00</td>
<td>126 50.40</td>
<td>cnb4w</td>
<td>126 3.98</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb5</td>
<td>49 30.00</td>
<td>127 23.66</td>
<td>cnb5w</td>
<td>126 37.00</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb6</td>
<td>49 45.00</td>
<td>127 69.29</td>
<td>cnb6w</td>
<td>126 40.02</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb7</td>
<td>50 0.00</td>
<td>128 1.18</td>
<td>cnb7w</td>
<td>127 16.04</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb8</td>
<td>50 15.00</td>
<td>129 40.45</td>
<td>cnb8w</td>
<td>127 53.06</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb9</td>
<td>50 30.00</td>
<td>129 7.70</td>
<td>cnb9w</td>
<td>128 13.08</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb10</td>
<td>50 45.00</td>
<td>129 15.99</td>
<td>cnb10w</td>
<td>128 28.10</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb11</td>
<td>51 0.00</td>
<td>130 23.27</td>
<td>cnb11w</td>
<td>129 35.13</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb12</td>
<td>51 15.00</td>
<td>130 35.55</td>
<td>cnb12w</td>
<td>129 48.15</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb13</td>
<td>51 30.00</td>
<td>130 37.84</td>
<td>cnb13w</td>
<td>129 49.17</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb14</td>
<td>51 45.00</td>
<td>130 45.13</td>
<td>cnb14w</td>
<td>130 56.19</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb15</td>
<td>52 0.00</td>
<td>131 32.43</td>
<td>cnb15w</td>
<td>130 43.22</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb16</td>
<td>52 15.00</td>
<td>131 46.73</td>
<td>cnb16w</td>
<td>131 57.24</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb17</td>
<td>52 30.00</td>
<td>131 7.03</td>
<td>cnb17w</td>
<td>132 17.27</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb18</td>
<td>52 45.00</td>
<td>131 1.34</td>
<td>cnb18w</td>
<td>132 11.29</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb19</td>
<td>53 0.00</td>
<td>132 25.65</td>
<td>cnb19w</td>
<td>132 35.31</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb20</td>
<td>53 15.00</td>
<td>132 42.97</td>
<td>cnb20w</td>
<td>132 52.34</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb21</td>
<td>53 30.00</td>
<td>132 7.29</td>
<td>cnb21w</td>
<td>132 36.37</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb22</td>
<td>53 45.00</td>
<td>132 46.62</td>
<td>cnb22w</td>
<td>132 55.39</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb23</td>
<td>54 0.00</td>
<td>133 1.96</td>
<td>cnb23w</td>
<td>133 10.42</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb24</td>
<td>54 15.00</td>
<td>133 10.29</td>
<td>cnb24w</td>
<td>133 18.44</td>
</tr>
<tr>
<td></td>
<td>Canada CN</td>
<td>cnb25</td>
<td>54 30.00</td>
<td>133 22.64</td>
<td>cnb25w</td>
<td>133 30.47</td>
</tr>
</tbody>
</table>

21
Table 1i. SET C Canadian Transects

<table>
<thead>
<tr>
<th>Location</th>
<th>Survey Area</th>
<th>Transect Number</th>
<th>Transect Latitude</th>
<th>West End</th>
<th>East End</th>
<th>Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC1</td>
<td>48 25.00</td>
<td>125</td>
<td>29.57</td>
<td>cnC1w 124 43.91 cnC1e 124 40.0 cnC1s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC2</td>
<td>48 40.00</td>
<td>125</td>
<td>41.82</td>
<td>cnC2w 124 55.93 cnC2e 124 52.0 cnC2s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC3</td>
<td>48 55.00</td>
<td>126</td>
<td>19.06</td>
<td>cnC3w 125 32.95 cnC3e 125 29.0 cnC3s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC4</td>
<td>49 10.00</td>
<td>126</td>
<td>34.31</td>
<td>cnC4w 125 47.97 cnC4e 125 44.0 cnC4s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC5</td>
<td>49 25.00</td>
<td>127</td>
<td>24.57</td>
<td>cnC5w 126 37.99 cnC5e 126 34.0 cnC5s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC6</td>
<td>49 40.00</td>
<td>127</td>
<td>16.83</td>
<td>cnC6w 126 30.01 cnC6e 126 26.0 cnC6s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC7</td>
<td>49 55.00</td>
<td>128</td>
<td>2.09</td>
<td>cnC7w 127 15.03 cnC7e 127 11.0 cnC7s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC8</td>
<td>50 10.00</td>
<td>128</td>
<td>41.36</td>
<td>cnC8w 127 54.05 cnC8e 127 50.0 cnC8s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC9</td>
<td>50 25.00</td>
<td>128</td>
<td>46.63</td>
<td>cnC9w 127 59.08 cnC9e 127 55.0 cnC9s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC10</td>
<td>50 40.00</td>
<td>129</td>
<td>13.90</td>
<td>cnC10w 128 26.10 cnC10e 128 22.0 cnC10s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC11</td>
<td>50 55.00</td>
<td>128</td>
<td>9.18</td>
<td>cnC11w 127 21.12 cnC11e 127 17.0 cnC11s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC12</td>
<td>51 10.00</td>
<td>128</td>
<td>39.46</td>
<td>cnC12w 127 51.14 cnC12e 127 47.0 cnC12s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC13</td>
<td>51 25.00</td>
<td>128</td>
<td>30.74</td>
<td>cnC13w 127 42.16 cnC13e 127 38.0 cnC13s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC14</td>
<td>51 40.00</td>
<td>128</td>
<td>46.03</td>
<td>cnC14w 127 57.19 cnC14e 127 53.0 cnC14s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC15</td>
<td>51 55.00</td>
<td>128</td>
<td>42.33</td>
<td>cnC15w 127 53.21 cnC15e 127 49.0 cnC15s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC16</td>
<td>52 10.00</td>
<td>128</td>
<td>19.63</td>
<td>cnC16w 127 30.23 cnC16e 127 26.0 cnC16s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC17</td>
<td>52 25.00</td>
<td>129</td>
<td>7.93</td>
<td>cnC17w 128 18.26 cnC17e 128 14.0 cnC17s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC18</td>
<td>52 40.00</td>
<td>129</td>
<td>4.24</td>
<td>cnC18w 128 14.28 cnC18e 128 10.0 cnC18s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC19</td>
<td>52 55.00</td>
<td>129</td>
<td>24.55</td>
<td>cnC19w 128 14.31 cnC19e 128 30.0 cnC19s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC20</td>
<td>53 10.00</td>
<td>129</td>
<td>38.07</td>
<td>cnC20w 128 40.33 cnC20e 128 36.0 cnC20s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC21</td>
<td>53 25.00</td>
<td>129</td>
<td>48.19</td>
<td>cnC21w 128 57.36 cnC21e 128 53.0 cnC21s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC22</td>
<td>53 40.00</td>
<td>130</td>
<td>38.51</td>
<td>cnC22w 129 47.38 cnC22e 129 43.0 cnC22s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC23</td>
<td>53 55.00</td>
<td>131</td>
<td>0.84</td>
<td>cnC23w 130 9.41 cnC23e 130 5.0 cnC23s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC24</td>
<td>54 10.00</td>
<td>131</td>
<td>6.18</td>
<td>cnC24w 130 14.44 cnC24e 130 10.0 cnC24s</td>
</tr>
<tr>
<td>Canada</td>
<td>CN</td>
<td>cnC25</td>
<td>54 25.00</td>
<td>131</td>
<td>23.52</td>
<td>cnC25w 130 31.46 cnC25e 130 27.0 cnC25s</td>
</tr>
</tbody>
</table>
Table 2. Distribution of point set sizes proposed for the 2011 Aerial Sardine Survey. Total Weight is in metric tons.

<table>
<thead>
<tr>
<th>Size (m²)</th>
<th>Weight (mt)</th>
<th>Total Weight</th>
<th>Number of Point Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.8</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>500</td>
<td>10.6</td>
<td>85</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>17.0</td>
<td>136</td>
<td>8</td>
</tr>
<tr>
<td>2000</td>
<td>26.5</td>
<td>212</td>
<td>8</td>
</tr>
<tr>
<td>4000</td>
<td>51.9</td>
<td>415</td>
<td>8</td>
</tr>
<tr>
<td>8000</td>
<td>70.5</td>
<td>564</td>
<td>8</td>
</tr>
<tr>
<td>10000</td>
<td>82.1</td>
<td>657</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>2099</td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Table 3. Sardine maturity codes. Source: Beverly Macewicz NMFS, SWFSC.

<table>
<thead>
<tr>
<th>Female maturity codes</th>
<th>Male maturity codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clearly immature- ovary is very small; no oocytes present</td>
<td>1. Clearly immature- testis is very small, knifed-shaped with flat edge</td>
</tr>
<tr>
<td>2. Intermediate- individual oocytes not visible but ovary is not clearly immature; includes maturing and regressed ovaries</td>
<td>2. Intermediate- no milt evident and is not a clear immature; includes maturing or regressed testis</td>
</tr>
<tr>
<td>3. Active- yolked oocytes visible; any size or amount as long as you can see them with the unaided eye in ovaries</td>
<td>3. Active- milt is present; either oozing from pore, in the duct, or when testis is cut with knife.</td>
</tr>
<tr>
<td>4. Hydrated oocytes present; yolked oocytes may be present</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1a. Maps showing locations of transects comprising Replicate SET A

SET A: Transects 1-8

SET A: Transects 9-16
Figure 1a, Continued. Maps showing locations of transects comprising Replicate SET A

SET A: Transects 17-26

<table>
<thead>
<tr>
<th></th>
<th>A17w</th>
<th>A17s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A18w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A20w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A21w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A22w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A23w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A24w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A25w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A26w</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1b. Maps showing locations of transects comprising Replicate SET B

SET B: Transects 1-8

SET B: Transects 9-16
Figure 1b, Continued. Maps showing locations of transects comprising Replicate SET B

SET B: Transects 17-26
Figure 1c. Maps showing locations of transects comprising Replicate SET C

SET C: Transects 1-8

SET C: Transects 9-16
Figure 1c, Continued. Maps showing locations of transects comprising Replicate SET C

SET C: Transects 17-26
Figure 2. Maps showing quadrants for spatial distribution of point sets.
DESCRIPTION

An aerial mount system for digital cameras that reduces image blur caused by the forward motion of the aircraft while the shutter is open. The mount and camera are connected to, and remotely controlled by, a program running on a customer-supplied (Windows-based) computer. Flight and camera parameters entered by the computer’s operator determine the required forward motion compensation (FMC) and camera firing interval. The system also takes inputs from the customer-supplied GPS and radar altimeter and will, optionally, use these data to automatically determine the required FMC and firing interval. The system includes a remote viewfinder that displays the image seen through the camera’s eyepiece on a small monitor to permit the computer operator to observe camera operation to ensure successful coverage of sites. It also includes a data acquisition system that interfaces with the camera, GPS, radar altimeter, and computer to record position and altitude readings as each frame is collected.
Appendix I, Adjunct 2. Field data forms – Aerial Sardine Survey

West Coast Aerial Sardine Survey 2011

Survey Data Form Overview

The purpose of this document is to help guide us through each of the 2011 sardine survey data forms. If you are still unclear of what a field within a form is asking, please contact your regional field coordinator for further clarification. Please have all survey forms completed and submitted to the regional field coordinator by the end of each survey day.

Transect Flight Log Form

Aerial survey pilots will complete the Transect Flight Log Forms for each transect flown for each survey day. The information recorded on this form will help the photo analyst identify fish schools during the transect survey photo processing period, so be as detailed as possible while recording notes. *If a transect is skipped or aborted due to poor visibility or some other factor, please make a note of it on the Transect Flight Log Form and also let your regional field coordinator know as early as possible.

Heading Information

- **Transect No.** – Record the transect number that is flown
- **Date** – Record the date that the transect is flown
- **Pilot** – Name of pilot flying the transect
- **Observer** – Name of observer on board if any
- **Plane** – Type of aircraft flying the transect
- **Transect Aborted** – If a survey transect is aborted or cut short of being completed, give the reason why i.e. fog, low cloud ceiling, ocean conditions and contact the regional field coordinator when time allows. Use the comments section for additional writing space.

Transect Data

- **Time** – Pilots are asked to log the time a fish school is observed along the survey transect
- **Photo #** - Pilots are asked to log the photo number that corresponds with the school identified on that transect.
- **Latitude/Longitude** – Record the latitude and longitude of the school observed while flying the survey transect.
- **Altitude (ft)** – Record the altitude of the plane as it passes over the school observed
- **Species Observed** – Record the species observed on each transect. Use comments section for additional writing space as needed.
• **Estimated School Tonnage (mt)** – Pilots are to estimate the observed tonnage of fish schools identified along the survey transect. If there are too many schools to estimate tonnage for each individual school, estimate the schools as a whole.

• **Comments** – Please write any additional information or notes in this section

Biological Sampling Form

During the 2011 West Coast Aerial Sardine Survey, biological samples will be taken from landed point sets to collect individual fish data. This form is to be filled out by the person/s working up the biological sample. Please contact your in season regional field coordinator with any questions or further clarification.

Heading Information

• **Date Landed** – Record the date the point set was landed at the processing plant

• **Date Sampled** – Record the date the biological sample was worked up

• **Vessel** – Record the vessel name that delivered the point set catch

• **Sample No.** – Record the sample number consecutively as they occur during the 2010 season

• **Point Set No.** – Record the point set number that the biological sample corresponds to

• **Sampler** – Record the name of the person/s processing the biological sample

• **Processor** – Name of the fish processing plant the sample was collected at

• **Sample Wt. (kg)** – Record the total biological sample weight in kilograms

Biological Data

• **Weight (g)** – Record the individual fish weights using an electronic scale accurate to 0.5 gm

• **Standard (Std.) Length (mm)** – Record the length of each individual fish. Standard length is measured from the tip of fish snout to last vertebrae in millimeters.

• **Sex** – Record the sex of each individual fish (M = male; F = female)

• **Maturity Code** – Record the maturity code that closely matches the maturity of the fish. Refer to Table. 3 of the Operational Plan for detailed sardine maturity codes.

• **Otolith vial #** - The otolith vial number is determined by the following information: the point set number, fish number and the year date the otolith was collected. This information allows for easy reference to the individual fish information as needed.

Example: Point set number 23 is being offloaded. You collect your biological sample from the processing plant. You have already determined which fish will be the otolith fish. It is a good idea to pre-label the capsules before working up the sample. So our otolith capsule would read PS23F37-10 which again refers to Point Set 23 and Fish number 37 of 50 collected in 2010.

• **Comments** – Please write any additional information or notes in this section.
Point Set Flight Log Form

During the 2011 West Coast Aerial Sardine Survey, pilots are asked to record important point set information that will be used in the photo enhancement process. Each pilot is asked to fill out a new Point Set Flight Log Form each day point sets are attempted. The Point Set Flight Log Form allows for six point sets to be recorded on each form. Use additional Point Set Flight Log Forms as needed. Also on the form is a comments section for the pilot to include any other important details or notes.

Heading Information

- **Date** – Record the date the point sets are completed
- **Pilot** – Name of pilot the setting the vessel for point sets
- **Plane** – Type of aircraft flying for point sets
- **Observer** – Name of observer onboard airplane if any
- **Processor** – Name of the fish processing plant that the catch will be delivered to

Point Set Flight Log Data

- **Point Set Number** – Number the point sets consecutively as they occur during the 2010 season
- **Time** – Record the time when the point set is attempted
- **Photo #** - Pilots are asked to log the photo number that corresponds with the point set school that is identified and being targeted
- **Position (Latitude/Longitude)** - Record the latitude and longitude of the school being targeted for the point set
- **Altitude(ft)** – Record the altitude of the airplane for which species identification was made
- **Vessel** – Record the name of the vessel being set during each point set
- **Species Observed** – Record the species observed for each point set. Use comment section for additional writing space
- **% of School Captured** – Pilots are to estimate a percentage of point set school capture. Pilots estimated percent capture should be independent of captain’s vessel estimate.
- **Estimated School Tonnage (mt)** – Pilots are to estimate the tonnage of the targeted fish school prior to setting on it.
- **Comments** – Please write any additional information or notes in this section.
Fisherman’s Log Form

During the 2011 West Coast Aerial Sardine Survey, vessel captains participating in the capture of point sets are asked to record important fish school data, ocean data, catch estimates and delivery information. Additional vessels may be utilized during point set operations, so be sure to include this information in the ‘Other Vessel utilized’ field under the Captains Estimate and Delivery Information heading. If additional vessels are used to land a point set, please contact your regional coordinator.

Heading Information

- **Date** – Record the date the point set is completed
- **Vessel** – Name of the vessel participating in the point set operations (also include any additional vessels that were utilized during a point set landing)
- **Captain** – Name of the person operating the vessel
- **Processor** – Name of the processing plant the point set catch will be delivered to

Fisherman’s Log Data

Hydro acoustic Gear

- **Manufacturer** – Record the manufacturer name of the sounder and sonar being used during point set operations
- **Model** – Record the model number or series number of the sounder and sonar being used during point set operations
- **Frequency** – Record the frequency used for both the sounder and sonar during point-set operations

Net Dimensions

- **Net Length** – Record the length of the net (in fathoms) being used during point set operations
- **Net Depth** – Record the depth of the net (in fathoms) being used during point set operations
- **Mesh size** – Record the size of the net mesh (in inches) being used during point set operations

School and Ocean Data

- **Point Set Number** – Number the point sets consecutively as they occur during the 2010 season
- **Time** – Record the time the skiff was deployed from the vessel for point set capture
- **Latitude/Longitude** – Record the positional information related to the targeted point set school
- **Depth to Top of School (fath)** – Record the distance from the water surface to the top of the targeted point set school
- **Depth to Bottom of School (fath)** – Record the distance from the water surface to the bottom of the targeted point set school
- **Ocean Depth (fath)** – Record the ocean depth at which the point set occurred
- **Temperature** – Record the temperature of the water that the point set occurred in
• **Weather Condition** – Refer to the key at the bottom of the Fisherman’s Log form for weather codes (Weather Codes: 1=calm, clear; 2=light wind, good visibility; 3=moderate wind, fair visibility; 4=poor fishing conditions)

Captains Estimate and Delivery Information

• **Species Observed** – Record the species observed for each point set

• **% of School captured** – Record the percentage of school captured. The captain’s estimate will be independent of the pilot’s estimated percent capture.

• **Estimated School Tonnage (mt)** – Record the estimated landed weight (mt) of the targeted point set

• **Fish Hold** – Record the fish hold that the point set is being held in for delivery. Below are abbreviations to be used for identifying which hold a specific point set is being held. Of course not all vessels will have six fish holds, use the fish hold code that best represents your vessels.

```
Diagram of fish hold abbreviations to be used on Fisherman's Log Form
```

• **Other Vessel utilized** – If an additional vessel is utilized to land a point set school, record the vessels name, estimated weight (mt) and in what holds the fish are being held. Use the comments section at the bottom of the form to report any additional information.

• **Delivered Weight (Office Use Only)** – Leave this field blank. After the delivery is completed, the regional field coordinators will acquire this information from the processing plant manager.

• **Fish Ticket Number (Office Use Only)** – Leave this field blank. The regional field coordinator will acquire this information from the processing plant manager.

• **Comments** – Please write any additional information or notes in this section.
West Coast Aerial Sardine Survey 2011
Pilot Pre-Flight Survey Checklist

Pre-Flight Checklist
- Check/clean the Plexiglas window on bottom of plane for condensation, dirt, etc.
- Check that the 28V Milwaukee battery is charged before departing.
- Ensure both memory cards are in the camera (CF – compact flash, SD – secured digital) and/or replace memory cards as they become full to prevent from filling up during flight.
- Check that a copy of the transect waypoint document is aboard the aircraft.
- Check GPS reading and enter waypoints if necessary.
- Check all camera system cables
 - Thick grey video cable: connect to black box on camera mount and to the computer box.
 - S-Video cable: connect to black box on camera mount and the splitter end to the camera.
 - Vaster (IOIOI) cable: connect to laptop and to computer box.
 - GPS cable: connect to GPS and to computer box.
 - Video cable: connect to camera, to USB converter, and to USB port on the laptop.
 - Portable power source: connect to shop light and to computer box.
 - Camera power source: connect to camera and to computer box.
 - Laptop power source: connect to laptop and to computer box.
- Power ON laptop, camera, inverter, 28V Milwaukee battery, and computer box.
- Open FMC Mount Control System 3.1 and FMC Mount Remote Viewfinder programs on the laptop.
- Adjust FMC Mount Control System settings as necessary.
 - Altitude: 4000ft (or TBD).
 - Speed: TBD.
 - Overlap: 60%.
 - Reset frame count to 0.
 - Admin
 - Frame Count
 - Enter 0.
 - FMC: On.
 - Ensure that GPS is functioning properly and that the location reading in the box is accurate.
- Adjust FMC Mount Remote Viewfinder settings as necessary.
 - Ensure that the number between the brackets (the number of photos remaining on the memory card) is higher than the number of photos to be taken that day.
☐ Press the setting button in the center of the quick control dial on the camera and ensure that the camera view is displayed in the Viewfinder window.

☐ Press F9 (trip) to ensure that the camera system is functioning properly.

☐ Power OFF the camera system so that power does not spike when starting the airplane.

☐ Start up airplane.

☐ Power system ON and press the settings button in the center of the quick control dial on the camera and ensure that the camera view is displayed in the Viewfinder window.

☐ Again, verify that the camera system GPS reads approximately equal to the pilot’s GPS.

☐ Press F9 (trip) to take a single photo to ensure that the camera system is functioning properly and that it can be seen through the Veiwfinder window. This is your last chance to make any corrections to the system before taking flight.

Mid-Flight Check

☐ Upon approaching the beginning of a transect/point-set, press F5 (auto) to begin automatic photo recording. Occasionally compare the camera system GPS to the pilots GPS. Also, remember to adjust the FMC altitude and speed settings when necessary.

Post-Flight Checklist

☐ Upon landing, the photos and FMC datalog will need to be downloaded.

☐ Connect USB/USB 2.0 cable from camera to laptop.

☐ The system will automatically recognize the photo folder to be downloaded.

☐ Press “ctrl A” to highlight all of the photos taken throughout the survey day of flying.

☐ Right-click on one of the highlighted photos and select Copy.

☐ Paste the photos into a new folder on the laptop labeled with the survey days date.

☐ Open the C: drive (if prompted, choose to open with Internet Explorer) on the laptop and locate the folder named “FMCdatalog.”

☐ Right-click on the FMCdatalog folder, select Copy, and then Paste the folder into the survey day’s photo folder.

☐ Attach a thumb drive to the computer via USB connection. Drag the survey day’s photo folder onto the thumb drive. The photos and FMCdatalog folder will be copied onto the thumb drive.

☐ Attach a mass external hard drive to the computer via USB/USB cable. Drag the survey day’s photo folder onto the WD external hard drive. The photos and FMCdatalog folder will be copied onto the hard drive.

☐ The day’s photos and FMCdatalog folder should now be archived to three locations (laptop, thumb drive, and external hard drive).

☐ Open all photo locations to ensure that the photos and FMCdatalog folder are properly saved.

☐ Power OFF the camera system and charge the 28V Milwaukee battery.

☐ Contact the regional data coordinator to coordinate the shipment of data

☐ Mail data frequently to ensure quick processing time.

Mail data to: Ryan Howe Address TBD
Appendix I, Adjunct 3. Identification and gear configuration of participating vessels

<table>
<thead>
<tr>
<th>Vessel Name</th>
<th>Skipper</th>
<th>Owner</th>
<th>USGS/OR Reg#</th>
<th>CPS/Sardine Permit #</th>
<th>Length</th>
<th>GRT</th>
<th>Holds</th>
<th>Capacity (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Pursuit</td>
<td>Keith Omey</td>
<td>Pacific Pursuit, LLC</td>
<td>OR873ABY</td>
<td>30920</td>
<td>73'</td>
<td>86</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Lauren L. Kapp</td>
<td>Ryan Kapp</td>
<td>Daryll Kapp</td>
<td>OR072ACX</td>
<td>57008</td>
<td>72'</td>
<td>74</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Pacific Knight</td>
<td>Mike Hull</td>
<td>Dulcich, Inc.</td>
<td>OR155ABZ</td>
<td>57011</td>
<td>62'</td>
<td>53</td>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

Appendix I, Adjunct 3a. Identification of participating sardine processors

In Washington and Oregon, participating fish processors will be established by a bid process using the same procedure as in 2010. At this writing, the bid process has not been completed. Likely processors for 2011 may include Ocean Gold, Astoria Pacific, Astoria Holdings, and/or potentially others.
Appendix I, Adjunct 4. Aerial Survey Point Set Protocol

1) Sardine schools to be captured for point sets will first be selected by the spotter pilot and photographed at the nominal survey altitude of 4,000 ft. After selection, the pilot may descend to a lower altitude to continue photographing the school and setting the fishing vessel.

2) It is essential that any school selected for a point set is a discrete school and is of a size that can be captured in its entirety by the purse seine vessel; point set schools may not be a portion of a larger aggregation of fish.

3) To ensure standardization of methodology, the first set of point sets taken by each participating pilot will be reviewed to ascertain that they meet specified requirements. From that point forward, point set photos will be reviewed routinely to ensure that requirements are met.

4) A continuous series of photographs will be taken before and during the vessels approach to the school to document changes in school surface area before and during the process of point set capture. The photographs will be collected automatically by the camera set at 60% overlap.

5) Each school selected by the spotter pilot and photographed for a potential point set will be logged on the spotter pilots’ Point Set Flight Log Form. The species identification of the selected school will be verified by the Captain of the purse seine vessel conducting the point set, and will be logged on the Fishermans’ Log Form. These records will be used to determine the rate of school mis-identification by spotter pilots in the field and by analysts viewing photographs taken at the nominal survey altitude of 4,000 ft.

6) The purse seine vessel will wrap and fully capture the school selected by the spotter pilot for the point set. Any schools not “fully” captured will not be considered a valid point set for analysis.

7) If a school is judged to be “nearly completely” captured (i.e. over 90% captured), it will be noted as such and will be included for analysis. Both the spotter pilot and the purse seine vessel captain will independently make note of the “percent captured” on their survey log forms for this purpose.

8) Upon capture, sardine point sets will be held in separate holds for separate weighing and biological sampling at the dock.

9) Biological samples of individual point sets will be collected at fish processing plants upon landing. Samples will be collected from the unsorted catch while being pumped from the vessels. Fish will be systematically taken at the start, middle, and end of a delivery as it is pumped. The three samples will then be combined and a random subsample of fish will be taken. The sample size will be n = 50 fish for each point set haul.

10) Length, weight, maturity, and age structures will be sampled for each point set haul and will be documented on the Biological Sampling Form. Sardine weights will be taken using an electronic scale accurate to 0.5 gm. Sardine lengths will be taken using a millimeter length strip provided attached to a measuring board. Standard length will be determined by measuring from sardine snout to the last vertebrae. Sardine maturity will be established by referencing maturity codes (female- 4 point scale, male- 3 point scale). Otolith samples will be collected from n = 25 fish selected at random from each n = 50 fish point set sample for future age reading analysis. Alternatively, the 25 fish subsample
may be frozen (with individual fish identified as to sample number, point set, vessel and location captured, to link back to biological data) and sampled for otoliths at a later date.

11) School height will be measured for each point set. This may be obtained by using either the purse seine or other participating research vessels' hydroacoustic gear. The school height measurements to be recorded on the Fishermans’ Log Form are: 1) depth in the water column of the top of the school, and 2) depth in the water column of the bottom of the school. Simrad ES-60 sounders will be installed on three purse seine vessels. Data collected by the ES-60 sounders will be backed-up daily and archived onshore.

12) Point sets will be conducted for a range of school sizes. Point sets will be targeted working in general from the smallest size category to the largest. The field director will oversee the gathering of point set landing data and will update the list of point sets needed (by size) daily for use by the spotter pilot. Each day, the spotter pilot will operate with an updated list of remaining school sizes needed for analysis. The spotter pilot will use his experience to judge the surface area of sardine schools from the air, and will direct the purse seine vessel to capture schools of the appropriate size. Following landing of the point sets at the dock, the actual school weights will be determined and the list of remaining school sizes needed will be updated accordingly for the next day of fishing. If schools are not available in the designated size range, point sets will be conducted on schools as close to the designated range as possible. Pumping large sets onto more than one vessel should be avoided, and should only be done in the accidental event that school size was grossly underestimated.

13) The Scientific Field Leader will also oversee the spatial distribution of point set sampling, to ensure adequate dispersal of point set data collection.

14) Photographs and FMCdatalogs of point sets will be forwarded from the field for lab analysis daily. In the northern region, these will be collected by Mr. Howe directly.

15) The total landed weight of point sets taken will not exceed the EFP allotment per area.

16) The following criteria will be used to exclude point sets from the density analysis (reasons used to deem a point set “unacceptable”). Mr. Howe will make the final determination of point set acceptability in the lab. A preliminary judgment will be made in the field, generally at the end of each day (or sooner) by the Field Project Leader, to ensure ongoing sampling is being properly accomplished.

<table>
<thead>
<tr>
<th></th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Percent captured School is judged to be less than 90% captured</td>
</tr>
<tr>
<td>2</td>
<td>No photograph -1 No photograph of vessel was documented (camera off)</td>
</tr>
<tr>
<td>3</td>
<td>No photograph -2 No photograph of vessel was documented (camera on)</td>
</tr>
<tr>
<td>4</td>
<td>No photograph -3 Photograph available, but late (vessel is already pursing the catch)</td>
</tr>
<tr>
<td>5</td>
<td>School not discrete Sardine captured was only a portion of a larger school ("cookie cutter")</td>
</tr>
<tr>
<td>6</td>
<td>Mixed hauls Multiple point sets were mixed in one hold</td>
</tr>
</tbody>
</table>
Appendix II

NMFS Guidelines: Coastal Pelagic Species Exempted Fishing Permit (EFP)

Aerial Sardine Survey

Application/Proposal Contents:

1. EFP application must contain sufficient information to determine that:
 a. There is adequate justification for an exemption to the regulations;

 Under this EFP, the West Coast Sardine Survey (a consortium of sardine industry participants) will perform a synoptic survey of the sardine biomass off the U.S. West Coast using aerial survey data in conjunction with fishing vessel observation data. This survey will continue the time series of data collection started in 2009 that provided information used in the PFMC Pacific sardine stock assessment. The PFMC has indicated support for the further development of this work, and has voted to set-aside a research allocation for the project.

 b. The potential impacts of the exempted activity have been adequately identified;

 Because the fishing, fishing locations, and quantities of fish requested in this EFP are addressed as part of the 2011 sardine harvest guideline as provided for in the CPS FMP, no additional unforeseen impacts are expected from this activity.

 c. The exempted activity would be expected to provide information useful to management and use of CPS fishery resources.

 <See: Introduction section of the Main Document>

2. Applicants must submit a completed application in writing that includes, but is not limited to, the following information:
 a. Date of application;

 [TBD]

 b. Applicant’s names, mailing addresses, and telephone numbers;

 <See: Survey Logistics; Project Personnel: Roles and Responsibilities (Page 9 of Main Document)>

 c. A statement of the purpose and goals of the experiment for which an EFP is needed, including a general description of the arrangements for the disposition of all species harvested under the EFP;
To ensure clear communications among participants and other interested parties, the single point of contact person during 2011 survey field work will be Mr. Chris Cearns (NWSS).

In 2008, pilot work began in the Northwest to evaluate the quantitative aerial survey method with point sets collected during the summer period of open fishing. It was very difficult to collect the data in a deliberate, methodical manner during the frenetic pace that typically accompanies a derby-style fishery opening. The issuance of an EFP allows for a more controlled sampling process with the focus on research and data quality, and will help to ensure better and more complete study results while using industry resources. This approach worked well in 2009 and 2010.

The research to be conducted under this EFP will further continue the time series of a new, scientifically rigorous survey of the Pacific sardine resource, and will again provide valuable Pacific sardine stock assessment data to the Council and to NOAA Fisheries. This information is considered a high priority research and data need by NOAA Fisheries. This survey methodology has been recommended by the Council and its sub-panels for use as an index of abundance in the PFMC Pacific sardine stock assessment.

This EFP will be valid for one year, allowing for catching of Pacific sardine during the closed periods between seasonal allocations throughout the 2011 season.

h. Number of vessels covered under the EFP as well as vessel names, skipper names, and vessel ID numbers and permit numbers;
i. A description of the species (target and incidental) to be harvested under the EFP and quantitative justification for the amount(s) of such harvest necessary to conduct the experiment; this description should include harvest estimates of overfished species and protected species;

Under this EFP, participating vessels will target Pacific sardine exclusively. NWSS is proposing to the PFMC that 2,100 mt of Pacific sardine be deducted from the 2011 Harvest Guideline prior to allocation and set aside for the dedicated sardine research to be conducted under this EFP. If approved, the harvested quantity under this EFP will be limited to this Council recommended 2,100 mt set-aside.

Bycatch is generally low in CPS fisheries because most CPS vessels fish with roundhaul gear, which encircles schools of fish with nets. This gear targets specific schools, which usually contain only one species. The most common incidental catches in the CPS fishery are other CPS species; Pacific mackerel, jack mackerel, market squid, and northern anchovy, may be encountered in small numbers and will be retained if captured. Quantities of these other coastal pelagics species are expected to be nominal, and within the harvest guidelines for those species. Few other species are expected to be encountered or harvested under this EFP.

A quantitative analysis of sample size requirements was conducted in 2010 to justify the amount of sardine needed to accomplish the survey objectives (See: Sardine EFP Application for 2010 (WCSS 2010): Pages 11, and Appendix III.

j. A description of a mechanism, such as at-sea or dockside fishery monitoring, to ensure that the harvest limits for targeted and incidental species are not exceeded and are accurately accounted for, and reported;

Under this EFP, participating vessels will deliver all species harvested to participating processing/freezing facilities within the survey area. Each participating vessel and participating processing/freezing facility will be responsible for collecting and recording catch data for each species delivered. Each participant will be responsible for the issuing and reporting of fish tickets to State authorities, as required by law.

Each participant will also be required to report all catch and fish ticket data to the survey Scientific Field Leader on a daily basis. Daily reporting is necessary to achieve the project objectives as specified in the Survey Design section of the main document. Individual point set catches will be kept in separate vessel holds and will be individually weighed at the dock upon landing. These individual point set catch weights will be tallied by the Scientific Field Leader to monitor the attainment of the project sample size goals, which specify that point sets are to be collected in specific size categories (small and large) required under the survey design. This detailed accounting of daily catch will
allow for a likewise detailed reporting to NMFS authorities and will ensure that the total sardine set aside amount of 2,100 mt will not be exceeded.

Any bycatch of other CPS species will be retained and a tally of the catch by species will be maintained by the Scientific Field Leader and reported to NMFS authorities on a daily basis to ensure that the harvest guidelines of incidental species taken are not exceeded. We do not expect more than a nominal amount of incidental species to be taken.

The PFMC website notes that, according to NMFS Biological Opinion, “… fishing activities conducted under the CPS FMP are not likely to jeopardize the continued existence of any endangered or threatened species.” It is not expected that any fishing under this EFP would have any effect on any endangered or threatened species.

k. A description of the proposed data collection methods including procedures to ensure and evaluate data quality during the experiment and data analysis methodology and time line of stages through completion;

<See: 1) Survey Design and Survey Logistics sections of the Main Document, and 2) Appendix I: Field Operational Plan>

l. A description of how vessels were chosen to participate in the EFP;

<See: Page 8 of Main Document; EFP Purse Seine Vessel Selection>

m. For each vessel covered by the EFP, the approximate time(s) and place(s) fishing will take place, and the type, size, and amount of gear to be used;

The three vessels operating will have the option to operate throughout the entire range of the survey region (from Cape Flattery, WA to the Oregon/California border).

<n. Identify potential benefits to fisheries management and coastal communities;

Sardine industry participants assert, based on the observations of fishing vessels and spotter pilots, that the survey to be conducted under this EFP will show a significantly greater Pacific sardine biomass than has been estimated under previous stock assessment models. If this assertion is proven to be true, the Pacific sardine HG may be expected to increase over that called for under the current stock assessment model. In any event this survey methodology has been demonstrated to be a valuable second index of abundance to expand understanding of the Pacific sardine resource.

A greater HG would provide benefits to all Pacific sardine and other CPS fisheries industry participants, including the fishermen, processors, spotter pilots, and all those employed by them, as well as to the coastal communities that support these industries.
Due to the reduced HG in 2008, fishing was limited to 135 days in the first seasonal allocation period, 38 days in the second seasonal allocation period, and 7 days in the third seasonal allocation period, resulting in 185 lost fishing days. Fishing seasons were further limited in 2009, [50 fishing days in the first period, 17 days in the second period, 8 days in the third period, and total prohibition on sardine retention on December 23, virtually eliminating fishing on the CPS complex including market squid]. Fishing was further limited in 2010. These closures precipitated even greater socio-economic impacts on communities. These lost fishing days mean reduced employment for fishing vessel and processing plant crews, and reduced income for coastal communities.

o. Discuss compatibility with existing seasons and other test fisheries, potential difficulties with processors or dealers, additional enforcement requirements, and potential negative impacts of the study (e.g., species listed under the Endangered Species Act, allocation shifts, shortened allocation periods, etc.);

The research set-aside for the aerial sardine survey is supported enthusiastically by the west coast sardine industry. Processors and dealers are supportive of this EFP; they are contributing a significant in-kind contribution to the research by processing the fish at cost and contributing the profit from the fish to the research. This EFP research set aside is part of the harvest guideline, and daily reports will be supplied to NMFS detailing the vessels fishing, their landing port(s) and amount of fish caught; no additional enforcement costs should be accrued.

p. Discuss ability to conduct proposed research - Identify the total costs (including collection of samples, data analysis, etc) associated with the research and sources of funding; identify any existing commitments for participation in, or funding of the project;

<See: Appendix II, Adjunct 2; Estimated Project Budget>

q. The signature of the applicant(s);

<See cover page>
Employment

[2008-Present] Tom Jagielo, Consulting Seattle, WA
Fisheries Science Consultant
Current Projects include:
- Design and execution of an aerial survey to estimate West Coast sardine abundance (Washington-Oregon–California) for the Pacific Fishery Management Council.
- Represent Oregon Department of Fish and Wildlife on the Scientific and Statistical Committee of the Pacific Fishery Management Council.
- Literature review and evaluation of West Coast Spatial groundfish management for the Environmental Defense Fund.

Senior Research Scientist
- Developed stock assessments and rebuilding analyses used by Pacific Fishery Management Council; Designed surveys and conducted undersea manned submersible research; Investigated groundfish movement, survival, and abundance.

Biologist
- Various projects including: Japanese Foreign Fisheries Observer (On Bering Sea for 6 months); Limnology of Lake Roosevelt; Toutle River salmon survival - following Mt. St. Helens volcanic eruption.

Education

Post MS Graduate Study
- Fishery Population Dynamics, Statistical Sampling and Estimation

Master of Science
- MS in Fisheries – Limnology of Lake Roosevelt, WA.

[1974-1977] Pennsylvania State University University Park, PA
Bachelor of Science
- BS in Biology and Marine Science
Scientific Committees

Selected Publications

Objective: To further my experience in the fisheries field while working with government agencies as well as public and private stakeholders.

Education: University of Alaska: Anchorage, AK
North Pacific Groundfish Observer Program
Level 1 Observer (October 2006)
Level 2 Observer (March 2008)

Michigan State University: East Lansing, MI
Bachelor’s of Science Degree (August 2006): Fisheries and Wildlife

Work Experience:

Scientific Field Lead, Northern region
West Coast Aerial Sardine Survey: WA and OR *July 2008 – Present*
- Coordinate coast wide data collection of aerial sardine survey
- Interaction with state and federal agencies as well as public and private stakeholders
- Collect biological information routinely of Pacific sardine (i.e. otolith, sex/length/weight, maturity)
- Daily analysis and archiving of photographic and biological data
- Enhancement and analysis of digital photos using Adobe Photoshop CS3 and Adobe Lightroom 2
- Oversee the aerial sardine survey photo analyst staff
- Experience with Simrad ES60 hydro acoustics echo sounder
- Experience with Canon EOS 1Ds camera in an Aerial Imaging Solutions FMC mount system

Fisheries Technician
Pacific Whiting Conservation Cooperative: Seattle, WA *May 2008 - Present*
- Collect biological information daily of Pacific Whiting and other species (i.e. species I.D., length/weight, species retention and storage)
- Record raw data on deck forms and enter in Microsoft Excel daily
- Assist in Seabird CTD operations (conductivity, temperature, depth)
- Work with vessel operator and crew to accomplish project tasks

North Pacific Fisheries Observer
TechSea International Inc.: Seattle, WA *September 2006 – March 2008*
- Collect biological information for NMFS (i.e. otolith, scale, s/l/w, tissue samples, species id, species retention)
- Collect and record catch and positional information on fishing vessels within the Bering Sea and Gulf of Alaska
- Interaction with state and federal agencies as well as public and private stakeholders
Fisheries Technician
Michigan State University: East Lansing, MI
June 2006 – August 2006
• Electro-shocked streams in Northwestern and Southwestern Ontario, Canada for a Ph.D. candidates Sea Lamprey research project.
• Maintained electro-shocking equipment and USGS vehicle provided for project
• Recorded biological, positional and catch information of sampled transects.

Fisheries Technician
Michigan State University: East Lansing, MI
Fall 2005
• Aided in electro-shocking of streams across southern lower Michigan to capture mottled sculpin for an undergraduate research project
• Gained teamwork skills by working with other technicians to accomplish the project goals

Fisheries Technician
Michigan State University: East Lansing, MI
Fall 2005
• Gained communication skills through interaction with hatchery biologists of the Michigan Department of Natural Resources
• Collect biological samples (i.e. kidney, liver, spleen, heart and gonads) of over 100 Chinook Salmon for future genetic analysis and to check for the presence of bacterial kidney disease (BKD).